Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance.
نویسندگان
چکیده
Leishmania is a trypanosomatid parasite causing serious disease and displaying resistance to various drugs. Here, we present comparative proteomic analyses of Leishmania major parasites that have been either shocked with or selected in vitro for high level resistance to the model antifolate drug methotrexate. Numerous differentially expressed proteins were identified by these experiments. Some were associated with the stress response, whereas others were found to be overexpressed due to genetic linkage to primary resistance mediators present on DNA amplicons. Several proteins not previously associated with resistance were also identified. The role of one of these, methionine adenosyltransferase, was confirmed by gene transfection and metabolite analysis. After a single exposure to low levels of methotrexate, L. major methionine adenosyltransferase transfectants could grow at high concentrations of the drug. Methotrexate resistance was also correlated to increased cellular S-adenosylmethionine levels. The folate and S-adenosylmethionine regeneration pathways are intimately connected, which may provide a basis for this novel resistance phenotype. This thorough comparative proteomic analysis highlights the variety of responses required for drug resistance to be achieved.
منابع مشابه
L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine.
In mammals, methionine adenosyltransferase (MAT), the enzyme responsible for S-adenosylmethionine (AdoMet) synthesis, is encoded by two genes, MAT1A and MAT2A. In liver, MAT1A expression is associated with high AdoMet levels and a differentiated phenotype, whereas MAT2A expression is associated with lower AdoMet levels and a dedifferentiated phenotype. In the current study, we examined regulati...
متن کاملS-adenosylmethionine synthetase is overexpressed in murine neuroblastoma cells resistant to nucleoside analogue inhibitors of S-adenosylhomocysteine hydrolase: a novel mechanism of drug resistance.
S-Adenosylmethionine (AdoMet) synthetase (EC 2.5.1.6), which catalyzes the synthesis of AdoMet from methionine and ATP, is the major methyl donor for transmethylation reactions and propylamino donor for the biosynthesis of polyamines in biological systems. We have reported previously that wild-type C-1300 murine neuroblastoma (wMNB) cells, made resistant to the nucleoside analogue (Z)-5'-fluoro...
متن کاملMethionine adenosyltransferase and ethionine resistance in Saccharomyces cerevisiae.
The methionine adenosyltransferase is repressed in Saccharomyces cerevisiae during growth in the presence of excess methionine. The relationship of this repression to the level of intracellular S-adenosylmethionine is discussed. In conjunction with these studies, an ethionine-resistant mutant has been investigated which has a low level of methionine adenosyltransferase under all conditions test...
متن کاملMethionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol.
S-Adenosylmethionine serves as the methyl donor for many biological methylation reactions and provides the propylamine group for the synthesis of polyamines. S-Adenosylmethionine is synthesized from methionine and ATP by the enzyme methionine adenosyltransferase. The cellular factors regulating S-adenosylmethionine synthesis have not been well defined. Here we show that in rat hepatocytes S-nit...
متن کامل5-Aza-2<-deoxycytidine induces hepatoma cell apoptosis via enhancing methionine adenosyltransferase 1A expression and inducing S-adenosylmethionine production.
In hepatocellular cancer (HCC), lack of response to chemotherapy and radiation treatment can be caused by a loss of epigenetic modifications of cancer cells. Methionine adenosyltransferase 1A is inactivated in HCC and may be stimulated by an epigenetic change involving promoter hypermethylation. Therefore, drugs releasing epigenetic repression have been proposed to reverse this process. We stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 32 شماره
صفحات -
تاریخ انتشار 2004